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CHAPTER 1

Installation

1.1 Compatibility and Dependencies

The dependencies of turtleFSI are:

• FEniCS 2019.1.0

• Numpy >1.1X

• Python >=3.7

1.2 Basic Installation

If you have a MacOX or Linux operating system we recommend that you install turtleFSI through Anaconda. First,
install Anaconda or Miniconda, depending on your need. For just installing turtleFSI we recommend Miniconda. Then
execute the following command in a terminal window:

$ conda create -n your_environment -c conda-forge turtleFSI

You can then activate your environment by running source activate your_environment. Now you are all
set, and can start using turtleFSI. A detailed explanation for usage of turtleFSI can be found here.

If you are using turtleFSI on a high performance computing (HPC) cluster we always recommend that you build from
source, as described below. This is in accordance with the guidelines provided by the FEniCS project users to install
FEniCS from source when on a HPC cluster.
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1.3 Development version

1.3.1 Downloading

The latest development version of turtleFSI can be found on the official turtleFSI git repository on Github. To clone
the turtleFSI repository, open a terminal, navigate to the directory where you wish turtleFSI to be stored, type the
following command, and press Enter:

$ git clone https://github.com/KVSlab/turtleFSI

After the source distribution has been downloaded, all the files will be located in the newly created turtleFSI
folder.

1.3.2 Building

In order to build and install turtleFSI, navigate into the turtleFSI folder, where a setup.py file will be located.
First, make sure that all dependencies are installed. Then, you can install turtleFSI be executing the following:

$ python setup.py install

If you are installing turtleFSI somewhere you do not have root access, typically on a cluster, you can add --user to
install locally.

2 Chapter 1. Installation
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CHAPTER 2

Using turtleFSI

2.1 Execute a run

turtleFSI is aimed to be user friendly, where all parameters can be controlled from the command line. We here provide
an example on how to create your own problem file. First a quick recap on how to execute turtleFSI.

To run turtleFSI with all the default parameters you can execute:

turtleFSI

which will execute the default problem file turtle_demo.pywith all the default parameter. In the folder where you
executed the command there will be a folder turtle_demo_results/1 where you can find Visualization
files, and under Checkpoint you can find a list of all parameters used in default_variables.pickle.

Note: The default number of time steps is set to 30, which takes a couple of minutes to execute on a normal desktop.
To re-create the video shown in readme set the end time (T) to 15 seconds. This will take some time to run, but you
can look at the intermediate results in turtle_demo_results/1 in paraview while running the simulation.

To run a specific problem file, run:

turtleFSI --problem [path_to_problem]

To get an overview of all parameters, please run:

turtleFSI -h

2.2 Built-in functionality

TurtleFSI is designed to be lightweight and generic, but we have added to features generally of interest: checkpoint-
ing/restart, and storing files for visualization.
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For checkpointing you can set the variable --checkpoint-step to set the checkpoint frequency, i.e., how often
a checkpoint should be stored. To restart from a previous checkpoint, use the command --restart-folder
[folder]/[sub-folder]. Note that the variables from the previous simulation will overwrite any parameters
defined in set_problem_parameters or on the commandline. If you need to change a parameter from the
previous checkpoint file (for instance, end time T), you can still do it by explicitly redefining the variable in the
initiate function.

To set how often you save files for visualization you can set --save-step. Note that the default is 10.

2.3 Setting parameters

All the default parameters are set in the problem/__init__.py file. Problem specific parameters are then over-
written in the problem file under set_problem_parameters or from the command line. In summary; the param-
eters will be updated in the following order: default parameters < set_problem_parameters < command line
(< checkpointing) < other problem specific functions.

2.4 Create your own problem file

We have created a step-by-step explanation, see the below, on how you can create your own problem file.

For all numerical problems we have to specify a set parameters, provide a mesh and boundary conditions, how to solve
the equations, and finally specify which metric we are interested in measuring. In turtleFSI problem file you can define
up to seven functions which provides the solver with the above mentioned information. Listed in the order they are
first executed:

• set_problem_parameters

• get_mesh_domain_and_boundaries

• initiate (optional)

• create_bcs

• pre_solve (optional)

• post_solve (optional)

• finished (optional)

2.4.1 set_problem_parameters

This function is for defining parameters of the problem like: time step size dt, end time T, and physical parameters
of the problem. To see a full list of the default parameters, we refer to the default_variables defined in
turtleFSI/problems/__init__.py. Please note that you can, and should, also define other problem specific
variables in default_variables, for instance, geometry information like hight and length of the problem is of
interest to the problem you are solving.

In the set_problem_parameters function, you have the possibility to set your problem parameters within the
default_variables dictionary. However, keep in mind that any command line arguments will overwrite the
default_variables.

A simple example of this function can look like this:

4 Chapter 2. Using turtleFSI
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def set_problem_parameters(default_variables, **namespace):
# Overwrite default values
default_variables.update(dict(

T=15, # End time [s]
dt=0.005, # Time step [s]
theta=0.505, # theta value (0.5 + dt), shifted Crank-

→˓Nicolson scheme
Um=1.0, # Max. velocity inlet [m/s]
rho_f=1.0E3, # Fluid density [kg/m3]
mu_f=1.0, # Fluid dynamic viscosity [Pa.s]
rho_s=1.0E3, # Solid density [kg/m3]
mu_s=5.0E4, # Solid shear modulus or 2nd Lame Coef. [Pa]
lambda_s=4.5E5, # Solid 1st Lame Coef. [Pa]
nu_s=0.45, # Solid Poisson ratio [-]
dx_f_id=1, # ID of marker in the fluid domain
dx_s_id=2, # ID of marker in the solid domain
extrapolation="biharmonic", # laplace, elastic, biharmonic, no-

→˓extrapolation
extrapolation_sub_type="constrained_disp", # ["constant", "small_constant",

→˓"volume", "volume_change", "constrained_disp", "constrained_disp_vel"]
recompute=15, # recompute the Jacobian matrix every

→˓"recompute" Newton iterations
folder="turtle_demo_results"), # name of the folder to save the data
save_step=1 # frequency of data saving

)
return default_variables

Note: The parameter extrapolation here refers to mesh lifting operator, i.e., how to de extrapolate the deformation of
the solid into the fluid to create an ALE frame of reference. Laplace is the cheapest in terms of computational cost,
but is less robust for large deformations and sharp edges. In contrast, biharmonic is very robust, but at the cost of
computational efficiency and increased memory load.

2.4.2 get_mesh_domain_and_boundaries

The function is essential and unique for every problem, and has to be provided for the problem file to run. Here you
read or define your mesh, domain markers, and boundary markers. In turtle_demo.pywe read the mesh data from
pre-existing “.xdmf” mesh files. In contrast to defining the domain and boundary markers using FEniCS functions,
like in the the ‘Turek flag’-example (TF_fsi.py).

pygmsh and meshio are relevant tools to create geometries. For any question regarding meshing, we refer to the
FEniCS documentation and discourse group.

In turtle_demo.py, the function looks like this:

def get_mesh_domain_and_boundaries(args, **namespace):
mesh_folder = path.join(path.dirname(path.abspath(__file__)), "..", "mesh",

→˓"turtle_demo")

# In this example, the mesh and markers are stored in the 3 following files
mesh_path = path.join(mesh_folder, "turtle_mesh.xdmf") # mesh geometry
domains_marker_path = path.join(mesh_folder, "mc.xdmf") # marker over the

→˓elements (domains)
boundaries_marker_path = path.join(mesh_folder, "mf.xdmf") # markers of the

→˓segments (boundaries)

(continues on next page)
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(continued from previous page)

# "mesh" collects the mesh geometry of the entire domain (fluid + solid).
# In this example, we import a mesh stored in a .xdmf file, but other formats
# are supported such as .xml files.
mesh = Mesh()
xdmf = XDMFFile(MPI.comm_world, mesh_path)
xdmf.read(mesh)

# "domains" collects the element markers of the fluid domain (marked as 1)
# and the solid domain (marked as 2).
domains = MeshFunction("size_t", mesh, mesh.geometry().dim())
xdmf = XDMFFile(MPI.comm_world, domains_marker_path)
xdmf.read(domains)

# "boundaries" collects the boundary markers that are used to apply the
# Dirichlet boundary conditions on both the fluid and solid domains.
# Marker values ranging from 11 to 15.
mesh_collection = MeshValueCollection("size_t", mesh, mesh.geometry().dim() - 1)
xdmf = XDMFFile(MPI.comm_world, boundaries_marker_path)
xdmf.read(mesh_collection)
boundaries = cpp.mesh.MeshFunctionSizet(mesh, mesh_collection)

return mesh, domains, boundaries

Fig. 1: Domain boundaries.

2.4.3 initiate

This function is not strictly necessary, but can be used to initiate variables before entering the time loop of the simula-
tion. Here we have no need for that, and have therefore not included it. See TF_fsi.py for an example.
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2.4.4 create_bcs

The function create_bcs is used to define the boundary conditions of the problem to be solved, and is required
for the problem file to run. In turtle_demo.py, the inlet boundary condition is defined the Inlet class, which
inherits the FEniCS UserExpression class. This class is then used in the function create_bcs to prescribe
Dirichlet boundary condition to the inlet velocity. When defining the boundary conditions to specific domain regions
or boundaries, make sure to be consistent with the markers provided in get_mesh_domain_and_boundaries:

class Inlet(UserExpression):
def __init__(self, Um, **kwargs):

self.t = 0.0
self.t_ramp = 0.5 # time to ramp-up to max inlet velocity (from 0 to Um)
self.Um = Um # Max. velocity inlet [m/s]
super().__init__(**kwargs)

def update(self, t):
self.t = t
if self.t < self.t_ramp:

self.value = self.Um * np.abs(np.cos(self.t/self.t_ramp*np.pi)-1)/2 #
→˓ramp-up the inlet velocity

print(self.value)
else:

Um_min = self.Um/6 # lower velocity during oscillations
self.value = (self.Um-Um_min) * np.abs(np.cos(self.t/self.t_ramp*np.pi)-

→˓1)/2 + Um_min
print(self.value)

def eval(self, value, x):
value[0] = self.value
value[1] = 0

def value_shape(self):
return (2,)

def create_bcs(DVP, boundaries, Um, v_deg, extrapolation_sub_type, **namespace):
if MPI.rank(MPI.comm_world) == 0:

print("Create bcs")

inlet = Inlet(Um, degree=v_deg)
noslip = ((0.0, 0.0))

# Segments indices (make sure of the consistency with the boundary file)
bottom_id = 11 # segments at the bottom of the model
outlet_id = 12 # segments at the outlet (right wall) of the model
top_id = 13 # segments at the top (right wall) of the model
inlet_id = 14 # segments at the inlet (left wall) of the model
turtle_head_tail_id = 15 # segments along the head and tail of the turtle

# Fluid velocity boundary conditions
u_inlet = DirichletBC(DVP.sub(1), inlet, boundaries, inlet_id)
u_bot = DirichletBC(DVP.sub(1).sub(1), (0.0), boundaries, bottom_id) # slip in x-

→˓direction
u_top = DirichletBC(DVP.sub(1).sub(1), (0.0), boundaries, top_id) # slip in x-

→˓direction
u_head_tail = DirichletBC(DVP.sub(1), noslip, boundaries, turtle_head_tail_id)

(continues on next page)
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(continued from previous page)

# Pressure boundary conditions
p_outlet = DirichletBC(DVP.sub(2), (0.0), boundaries, outlet_id)

# List boundary conditions for the fluid
bcs = [u_bot, u_top, u_inlet, p_outlet, u_head_tail]

# Mesh uplifting boundary conditions
d_inlet = DirichletBC(DVP.sub(0), noslip, boundaries, inlet_id)
d_bot = DirichletBC(DVP.sub(0), noslip, boundaries, bottom_id)
d_top = DirichletBC(DVP.sub(0), noslip, boundaries, top_id)
d_outlet = DirichletBC(DVP.sub(0), noslip, boundaries, outlet_id)
d_head_tail = DirichletBC(DVP.sub(0), noslip, boundaries, turtle_head_tail_id)

# Add boundary conditions for the structure
bcs += [d_bot, d_top, d_outlet, d_inlet, d_head_tail]:

return dict(bcs=bcs, inlet=inlet)

Fig. 2: Boundaries between the fluid and structures and fixed boundaries.
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Fig. 3: Inlet velocity amplitude variation with time as defined by the class Inlet().

2.4.5 pre_solve

This function is called within the time loop of the simulation before calling the solver at the given time step. In
turtle_demo.py, we used this function to update the time variable of the Inlet expression used for the inlet
boundary conditions:

def pre_solve(t, inlet, **namespace):
# Update the time variable used for the inlet boundary condition
inlet.update(t)

2.4.6 post_solve

This function is called within the time loop of the simulation after calling the solver at the given time step. In
turtle_demo.py, we do not have any use for this function, but see TF_fsi.py for an example.

2.4.7 finished

Function called once at the end of the time loop. An example of use is given in the TF_fsi.py where text file are
saved to store informations from the simulation:

def finished(folder, dis_x, dis_y, Drag_list, Lift_list, Time_list, **namespace):
if MPI.rank(MPI.comm_world) == 0:

np.savetxt(path.join(folder, 'Lift.txt'), Lift_list, delimiter=',')
np.savetxt(path.join(folder, 'Drag.txt'), Drag_list, delimiter=',')
np.savetxt(path.join(folder, 'Time.txt'), Time_list, delimiter=',')
np.savetxt(path.join(folder, 'dis_x.txt'), dis_x, delimiter=',')
np.savetxt(path.join(folder, 'dis_y.txt'), dis_y, delimiter=',')

2.5 Visualizing the result

Given that the parameter --save-step not was set larger than the number of time steps, there will be a folder:
[folder]/[sub-folder]/Visualization with xdmf files that can be opened in a visualization probrem,
for instance ParaView. Below we have visualized the pressure and velocity at 2.5 s.

2.5. Visualizing the result 9
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Note: In order to visualize the deformation of the mesh in ParaView, you need to apply a Warp by Vector filter
to the displacement.xdmf. You can control the scale of the deofrmation by adjusting the Scale Factor.

Fig. 4: Pressure and velocity fields at 2.5 s. obtained by running the turtle_demo.py problem file.
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CHAPTER 3

Newton solver convergence and performance

We illustrate the solver convergence and performance of turtleFSI with a 3D FSI pipe flow problem (animation be-
low). We impose a constant Dirichlet plug flow at one end of the fluid domain and compute the resulting structure
deformation and fluid flow along the pipe.

Fig. 1: Animation of the problem used for benchmarking convergence and performance.

3.1 Solver convergence

The robustness of turtleFSI relies on the use of a direct solver (here, MUMPS) within each Newton iterations. Using
a direct solver for large 3D problems can rapidly become computationally demanding. Indeed, most of the computa-
tional cost of turtleFSI is spent to perform the factorization of the linear system at each Newton iterations. To mitigate
this limitation, we can reuse the same factorization over several iterations by not updating the Jacobian matrix of the
problem. This can typically be done in simulations where the Newton iterations exhibit “good” converge behavior. In
turtleFSI, the reuse of the Jacobian matrix can be set by the flags recompute, which takes an integer and controls
how many iterations reusing the same Jacobian matrix in the same timestep. recompute_tstep, does the same,
but controls how many time steps to take reusing the same Jacobian matrix.

Note: Any increase of the relative or absolute residual will trigger turtleFSI to recompute the Jacobian matrix,
irrespective of the prescribed user values set by the recompute and recompute_tstep.

Figure 1 illustrates the convergence of the solver using the full Newton procedure, updating the Jacobian matrix at
each iteration step versus reusing the Jacobian matrix over the iterations (and the time steps). Reusing the Jacobian
matrix leads to a larger number of iterations per time steps, typically ~10 iterations instead of ~5 when updating the
Jacobian matrix, but the compute time is drastically reduced from ca. 20 min. to only 25 s. per time step. The results
were produced with an AMD CPU Ryzen 5 1600, using 12 threads.
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Fig. 2: Figure 1: Comparison of the convergence behavior of the Newton procedure when updating or reusing the
Jacobian matrix. The residuals are plotted for the time steps 31 to 36 of the 3D FSI pipe flow problem (see above
animation). The average execution time for each time step with updated Jacobian is 1170 seconds and 25 seconds for
the reused Jacobian.

3.2 HPC performance

turtleFSI benefits from the high-performance computing (HPC) functionality of FEniCS and the solver can be executed
with MPI parallel tasks as follow without any addition to the code:

mpirun -np 4 turtleFSI

We performed a strong scaling of a 3D FSI pipe flow to illustrate the behavior of the solver using a relatively large
number of parallel MPI tasks. We present the results obtained at the second time step of the simulation starting from
initial rest. We demonstrate an adequate scaling using up to 64 cores of one cluster node, both executing turtleFSI
from a module installation or within a docker container (Figure 2c). A direct consequence of splitting the geometry
in several MPI domains (Figure 2b) is an increase of the system size associated with the handling of the degree of
freedoms along the inner split boundaries. We illustrate this effect in Figure d where the total memory usage is
monitored as function of the number of MPI tasks used to solve the problem. In our example, we reuse the Jacobian
matrix and the factorization of the direct solver over five Newton’s iterations. As shown in Figure 2c, the total execution
time for computing the Jacobian matrix once and factorization of the system is about two orders of magnitude larger
than solving five iteration steps by reusing the factorization.
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Fig. 3: Figure 2: Strong scaling of a 3D FSI pipe flow problem. a) Meshing of the inner fluid domain, and outer solid
pipe with a total of 63 thousand elements. b) Split of the geometry in 16 MPI domains. c) Total time spent for one time
step (jac.: Jacobian matrix evaluation, fact.: direct solver factorization step, it.: direct solver solve steps) as function
of the number of MPI tasks. d) System memory usage as function of the number of MPI tasks for three different mesh
discretizations of the problem illustrated in panel a).

3.2. HPC performance 13
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CHAPTER 4

New features

The existing methods provide many degrees of freedom, however, if you need a specific method or functionality,
please do not hesitate to propose enhancements in the issue tracker, or create a pull request with new features. Our
only request is that you follow our guidelines for contributing.
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CHAPTER 5

Known issues

5.1 MUMPS failure error message

When running a large problem, typically a 3D problem with many number of degrees of freedom, with several tens of
processors, the MUMPS solver (our default linear solver) may fail with the following error message:

*** -------------------------------------------------------------------------

*** Error: Unable to solve linear system using PETSc Krylov solver.

*** Reason: Solution failed to converge in 0 iterations (PETSc reason DIVERGED_PC_
→˓FAILED, residual norm ||r|| = 0.000000e+00).

*** Where: This error was encountered inside PETScKrylovSolver.cpp.

*** Process: 11

***
*** DOLFIN version: 2019.2.0.dev0

*** Git changeset: 43642bad27866a5bf4e8a117c87c0f6ba777b196

*** -------------------------------------------------------------------------

While the specific reason for this error message can vary, it may occur even when the Newton iteration appears to
converge correctly. In such a case, it is likely that the MUMPS does not hold enough memory to solve the linear
system. To provide more useful information to the user and reduce the likelihood of encountering this error message,
we have added two lines of code to the newtonsolver.py file. These lines will (1) print the actual error message
from the MUMPS solver and (2) allocate more memory to MUMPS. Specifically, the following code has been added:

PETScOptions.set("mat_mumps_icntl_4", 1)
PETScOptions.set("mat_mumps_icntl_14", 400)

The first line of code will print the actual error message from the MUMPS solver, and the second line of code will
allocate more memory to MUMPS. For detailed information about the parameters of MUMPS, please refer to here.

17
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