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Installation


Compatibility and Dependencies

The dependencies of turtleFSI are:


	FEniCS 2019.1.0


	Numpy >1.1X


	Python >=3.7






Basic Installation

If you have a MacOX or Linux operating system we recommend that you
install turtleFSI through Anaconda. First, install Anaconda or Miniconda [https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html#anaconda-or-miniconda],
depending on your need. For just installing turtleFSI we recommend Miniconda.
Then execute the following command in a terminal window:

$ conda create -n your_environment -c conda-forge turtleFSI





You can then activate your environment by running source activate your_environment.
Now you are all set, and can start using turtleFSI. A detailed explanation for usage of
turtleFSI can be found here [https://turtlefsi2.readthedocs.io/en/latest/using_turtleFSI.html].

If you are using turtleFSI on a high performance computing (HPC) cluster we always
recommend that you build from source, as described below. This is in accordance
with the guidelines provided by the FEniCS project [https://fenicsproject.org/download/]
users to install FEniCS from source when on a HPC cluster.



Development version


Downloading

The latest development version of turtleFSI can be found on the official
turtleFSI git repository [https://github.com/KVSlab/turtleFSI] on Github.
To clone the turtleFSI repository, open a terminal, navigate to the directory where you wish
turtleFSI to be stored, type the following command, and press Enter:

$ git clone https://github.com/KVSlab/turtleFSI





After the source distribution has been downloaded, all the files will be located
in the newly created turtleFSI folder.



Building

In order to build and install turtleFSI, navigate into the turtleFSI folder, where a setup.py
file will be located. First, make sure that all dependencies are installed.
Then, you can install turtleFSI be executing the following:

$ python setup.py install





If you are installing turtleFSI somewhere you do not have root access, typically on a cluster, you can add
--user to install locally.






          

      

      

    

  

    
      
          
            
  
Using turtleFSI


Execute a run

turtleFSI is aimed to be user friendly, where all parameters can be controlled from the command line.
We here provide an example on how to create your own problem file. First a quick recap on how to
execute turtleFSI.

To run turtleFSI with all the default parameters you can execute:

turtleFSI





which will execute the default problem file turtle_demo.py with all the default parameter. In the folder where
you executed the command there will be a folder turtle_demo_results/1 where you can find Visualization files,
and under Checkpoint you can find a list of all parameters used in default_variables.pickle.


Note

The default number of time steps is set to 30, which takes a couple of minutes to execute on a normal desktop.
To re-create the video shown in readme set the end time (T) to 15 seconds. This will take some time to run,
but you can look at the intermediate results in turtle_demo_results/1 in paraview while running the simulation.



To run a specific problem file, run:

turtleFSI --problem [path_to_problem]





To get an overview of all parameters, please run:

turtleFSI -h







Built-in functionality

TurtleFSI is designed to be lightweight and generic, but we have added to features generally of interest: checkpointing/restart, and
storing files for visualization.

For checkpointing you can set the variable --checkpoint-step to set the checkpoint frequency, i.e., how often a
checkpoint should be stored. To restart from a previous checkpoint, use the command
--restart-folder [folder]/[sub-folder]. Note that the variables from the previous simulation will overwrite any
parameters defined in set_problem_parameters or on the commandline. If you need to change a parameter from the
previous checkpoint file (for instance, end time T), you can still do it by explicitly redefining the variable
in the initiate function.

To set how often you save files for visualization you can set --save-step. Note that the default is 10.



Setting parameters

All the default parameters are set in the problem/__init__.py file. Problem specific parameters
are then overwritten in the problem file under set_problem_parameters or from the command line.
In summary; the parameters will be updated in the following order: default parameters < set_problem_parameters <
command line (< checkpointing) < other problem specific functions.



Create your own problem file

We have created a step-by-step explanation, see the below, on how you can create your own problem file.

For all numerical problems we have to specify a set parameters, provide a mesh and boundary conditions,
how to solve the equations, and finally specify which metric we are interested in measuring.
In turtleFSI problem file you can define up to seven functions which provides the solver with
the above mentioned information. Listed in the order they are first executed:


	set_problem_parameters


	get_mesh_domain_and_boundaries


	initiate (optional)


	create_bcs


	pre_solve (optional)


	post_solve (optional)


	finished (optional)





set_problem_parameters

This function is for defining parameters of the problem like: time step size dt, end time T, and
physical parameters of the problem. To see a full list of the default parameters, we refer to the
default_variables defined in turtleFSI/problems/__init__.py. Please note that you can, and should, also
define other problem specific variables in default_variables, for instance, geometry information like hight
and length of the problem is of interest to the problem you are solving.

In the set_problem_parameters function, you have the possibility to set your problem parameters within the
default_variables dictionary. However, keep in mind that any command line arguments will overwrite the default_variables.

A simple example of this function can look like this:

def set_problem_parameters(default_variables, **namespace):
    # Overwrite default values
    default_variables.update(dict(
        T=15,                          # End time [s]
        dt=0.005,                      # Time step [s]
        theta=0.505,                   # theta value (0.5 + dt), shifted Crank-Nicolson scheme
        Um=1.0,                        # Max. velocity inlet [m/s]
        rho_f=1.0E3,                   # Fluid density [kg/m3]
        mu_f=1.0,                      # Fluid dynamic viscosity [Pa.s]
        rho_s=1.0E3,                   # Solid density [kg/m3]
        mu_s=5.0E4,                    # Solid shear modulus or 2nd Lame Coef. [Pa]
        lambda_s=4.5E5,                # Solid 1st Lame Coef. [Pa]
        nu_s=0.45,                     # Solid Poisson ratio [-]
        dx_f_id=1,                     # ID of marker in the fluid domain
        dx_s_id=2,                     # ID of marker in the solid domain
        extrapolation="biharmonic",    # laplace, elastic, biharmonic, no-extrapolation
        extrapolation_sub_type="constrained_disp",  # ["constant", "small_constant", "volume", "volume_change", "constrained_disp", "constrained_disp_vel"]
        recompute=15,                  # recompute the Jacobian matrix every "recompute" Newton iterations
        folder="turtle_demo_results"), # name of the folder to save the data
        save_step=1                    # frequency of data saving
     )
     return default_variables






Note

The parameter extrapolation here refers to mesh lifting operator, i.e., how to de extrapolate the deformation of
the solid into the fluid to create an ALE frame of reference. Laplace is the cheapest in terms of computational
cost, but is less robust for large deformations and sharp edges. In contrast, biharmonic is very robust, but
at the cost of computational efficiency and increased memory load.





get_mesh_domain_and_boundaries

The function is essential and unique for every problem, and has to be provided for the problem file to run.
Here you read or define your mesh, domain markers, and boundary markers. In turtle_demo.py we
read the mesh data from pre-existing “.xdmf” mesh files. In contrast to defining the domain and
boundary markers using FEniCS functions, like in the the ‘Turek flag’-example (TF_fsi.py).

pygmsh and meshio are relevant tools to create geometries. For any question regarding meshing,
we refer to the FEniCS documentation and discourse group [https://fenicsproject.discourse.group/].

In turtle_demo.py, the function looks like this:

def get_mesh_domain_and_boundaries(args, **namespace):
    mesh_folder = path.join(path.dirname(path.abspath(__file__)), "..", "mesh", "turtle_demo")

    # In this example, the mesh and markers are stored in the 3 following files
    mesh_path = path.join(mesh_folder, "turtle_mesh.xdmf")     # mesh geometry
    domains_marker_path = path.join(mesh_folder, "mc.xdmf")    # marker over the elements (domains)
    boundaries_marker_path = path.join(mesh_folder, "mf.xdmf") # markers of the segments (boundaries)

    # "mesh" collects the mesh geometry of the entire domain (fluid + solid).
    # In this example, we import a mesh stored in a .xdmf file, but other formats
    # are supported such as .xml files.
    mesh = Mesh()
    xdmf = XDMFFile(MPI.comm_world, mesh_path)
    xdmf.read(mesh)

    # "domains" collects the element markers of the fluid domain (marked as 1)
    # and the solid domain (marked as 2).
    domains = MeshFunction("size_t", mesh, mesh.geometry().dim())
    xdmf = XDMFFile(MPI.comm_world, domains_marker_path)
    xdmf.read(domains)

    # "boundaries" collects the boundary markers that are used to apply the
    # Dirichlet boundary conditions on both the fluid and solid domains.
    # Marker values ranging from 11 to 15.
    mesh_collection = MeshValueCollection("size_t", mesh, mesh.geometry().dim() - 1)
    xdmf = XDMFFile(MPI.comm_world, boundaries_marker_path)
    xdmf.read(mesh_collection)
    boundaries = cpp.mesh.MeshFunctionSizet(mesh, mesh_collection)

    return mesh, domains, boundaries






[image: _images/Turtle_boundaries.png]

Domain boundaries.





initiate

This function is not strictly necessary, but can be used to initiate variables before
entering the time loop of the simulation. Here we have no need for that, and have therefore
not included it. See TF_fsi.py for an example.



create_bcs

The function create_bcs is used to define the boundary conditions of the problem to be solved,
and is required for the problem file to run. In turtle_demo.py, the inlet boundary condition
is defined the Inlet class, which inherits the FEniCS UserExpression class.
This class is then used in the function create_bcs to prescribe Dirichlet boundary condition to the
inlet velocity. When defining the boundary conditions to specific domain regions or boundaries, make sure to
be consistent with the markers provided in get_mesh_domain_and_boundaries:

class Inlet(UserExpression):
    def __init__(self, Um, **kwargs):
        self.t = 0.0
        self.t_ramp = 0.5  # time to ramp-up to max inlet velocity (from 0 to Um)
        self.Um = Um       # Max. velocity inlet [m/s]
        super().__init__(**kwargs)

    def update(self, t):
        self.t = t
        if self.t < self.t_ramp:
            self.value = self.Um * np.abs(np.cos(self.t/self.t_ramp*np.pi)-1)/2  # ramp-up the inlet velocity
            print(self.value)
        else:
            Um_min = self.Um/6  # lower velocity during oscillations
            self.value = (self.Um-Um_min) * np.abs(np.cos(self.t/self.t_ramp*np.pi)-1)/2 + Um_min
            print(self.value)

    def eval(self, value, x):
        value[0] = self.value
        value[1] = 0

    def value_shape(self):
        return (2,)


def create_bcs(DVP, boundaries, Um, v_deg, extrapolation_sub_type, **namespace):
    if MPI.rank(MPI.comm_world) == 0:
        print("Create bcs")

    inlet = Inlet(Um, degree=v_deg)
    noslip = ((0.0, 0.0))

    # Segments indices (make sure of the consistency with the boundary file)
    bottom_id = 11  # segments at the bottom of the model
    outlet_id = 12  # segments at the outlet (right wall) of the model
    top_id = 13     # segments at the top (right wall) of the model
    inlet_id = 14   # segments at the inlet (left wall) of the model
    turtle_head_tail_id = 15   # segments along the head and tail of the turtle

    # Fluid velocity boundary conditions
    u_inlet = DirichletBC(DVP.sub(1), inlet, boundaries, inlet_id)
    u_bot = DirichletBC(DVP.sub(1).sub(1), (0.0), boundaries, bottom_id)  # slip in x-direction
    u_top = DirichletBC(DVP.sub(1).sub(1), (0.0), boundaries, top_id)     # slip in x-direction
    u_head_tail = DirichletBC(DVP.sub(1), noslip, boundaries, turtle_head_tail_id)

    # Pressure boundary conditions
    p_outlet = DirichletBC(DVP.sub(2), (0.0), boundaries, outlet_id)

    # List boundary conditions for the fluid
    bcs = [u_bot, u_top, u_inlet, p_outlet, u_head_tail]

    # Mesh uplifting boundary conditions
    d_inlet = DirichletBC(DVP.sub(0), noslip, boundaries, inlet_id)
    d_bot = DirichletBC(DVP.sub(0), noslip, boundaries, bottom_id)
    d_top = DirichletBC(DVP.sub(0), noslip, boundaries, top_id)
    d_outlet = DirichletBC(DVP.sub(0), noslip, boundaries, outlet_id)
    d_head_tail = DirichletBC(DVP.sub(0), noslip, boundaries, turtle_head_tail_id)

    # Add boundary conditions for the structure
    bcs += [d_bot, d_top, d_outlet, d_inlet, d_head_tail]:

    return dict(bcs=bcs, inlet=inlet)
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Boundaries between the fluid and structures and fixed boundaries.
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Inlet velocity amplitude variation with time as defined by the class Inlet().





pre_solve

This function is called within the time loop of the simulation before calling the solver
at the given time step. In turtle_demo.py, we used this function to update the time variable of the
Inlet expression used for the inlet boundary conditions:

def pre_solve(t, inlet, **namespace):
    # Update the time variable used for the inlet boundary condition
    inlet.update(t)







post_solve

This function is called within the time loop of the simulation after
calling the solver at the given time step. In turtle_demo.py, we do not have any use for
this function, but see TF_fsi.py for an example.



finished

Function called once at the end of the time loop. An example of use is given in the
TF_fsi.py where text file are saved to store informations from the simulation:

def finished(folder, dis_x, dis_y, Drag_list, Lift_list, Time_list, **namespace):
    if MPI.rank(MPI.comm_world) == 0:
        np.savetxt(path.join(folder, 'Lift.txt'), Lift_list, delimiter=',')
        np.savetxt(path.join(folder, 'Drag.txt'), Drag_list, delimiter=',')
        np.savetxt(path.join(folder, 'Time.txt'), Time_list, delimiter=',')
        np.savetxt(path.join(folder, 'dis_x.txt'), dis_x, delimiter=',')
        np.savetxt(path.join(folder, 'dis_y.txt'), dis_y, delimiter=',')








Visualizing the result

Given that the parameter --save-step not was set larger than the number of time steps, there will
be a folder: [folder]/[sub-folder]/Visualization with xdmf files that can be opened in a
visualization probrem, for instance ParaView. Below we have visualized the pressure and velocity at 2.5 s.


Note

In order to visualize the deformation of the mesh in ParaView, you need to apply a Warp by Vector filter to the displacement.xdmf.
You can control the scale of the deofrmation by adjusting the  Scale Factor.




[image: _images/Turtle_Flow_Pressure_Fields_t_2.5s.png]

Pressure and velocity fields at 2.5 s. obtained by running the turtle_demo.py problem file.







          

      

      

    

  

    
      
          
            
  
Newton solver convergence and performance

We illustrate the solver convergence and performance of turtleFSI with a 3D FSI pipe flow problem
(animation below). We impose a constant Dirichlet plug flow at one end of the fluid domain and
compute the resulting structure deformation and fluid flow along the pipe.


[image: _images/movie_36_tstep.gif]

Animation of the problem used for benchmarking convergence and performance.




Solver convergence

The robustness of turtleFSI relies on the use of a direct solver (here, MUMPS) within each Newton
iterations. Using a direct solver for large 3D problems can rapidly become computationally
demanding. Indeed, most of the computational cost of turtleFSI is spent to perform the factorization
of the linear system at each Newton iterations. To mitigate this limitation, we can reuse the same
factorization over several iterations by not updating the Jacobian matrix of the problem. This can
typically be done in simulations where the Newton iterations exhibit “good” converge behavior. In
turtleFSI, the reuse of the Jacobian matrix can be set by the flags recompute, which takes
an integer and controls how many iterations reusing the same Jacobian matrix in the same timestep.
recompute_tstep, does the same, but controls how many time steps to take reusing the same
Jacobian matrix.


Note

Any increase of the relative or absolute residual will trigger turtleFSI to recompute the
Jacobian matrix, irrespective of the prescribed user values set by the recompute and
recompute_tstep.



Figure 1 illustrates the convergence of the solver using the full Newton procedure, updating the
Jacobian matrix at each iteration step versus reusing the Jacobian matrix over the iterations
(and the time steps). Reusing the Jacobian matrix leads to a larger number of iterations per time
steps, typically ~10 iterations instead of ~5 when updating the Jacobian matrix, but the compute
time is drastically reduced from ca. 20 min. to only 25 s. per time step. The results were produced
with an AMD CPU Ryzen 5 1600, using 12 threads.


[image: _images/reuse_jac_iterations.png]

Figure 1: Comparison of the convergence behavior of the Newton procedure when updating or
reusing the Jacobian matrix. The residuals are plotted for the time steps 31 to 36 of the 3D
FSI pipe flow problem (see above animation). The average execution time for each time step with
updated Jacobian is 1170 seconds and 25 seconds for the reused Jacobian.





HPC performance

turtleFSI benefits from the high-performance computing (HPC) functionality of FEniCS and the solver
can be executed with MPI parallel tasks as follow without any addition to the code:

mpirun -np 4 turtleFSI





We performed a strong scaling of a 3D FSI pipe flow to illustrate the behavior of the solver using a
relatively large number of parallel MPI tasks. We present the results obtained at the second time step
of the simulation starting from initial rest. We demonstrate an adequate scaling using up to 64 cores
of one cluster node, both executing turtleFSI from a module installation or within a docker container
(Figure 2c). A direct consequence of splitting the geometry in several MPI domains (Figure 2b) is an
increase of the system size associated with the handling of the degree of freedoms along the inner
split boundaries. We illustrate this effect in Figure d where the total memory usage is monitored as
function of the number of MPI tasks used to solve the problem. In our example, we reuse the Jacobian
matrix and the factorization of the direct solver over five Newton’s iterations. As shown in Figure 2c,
the total execution time for computing the Jacobian matrix once and factorization of the system is about
two orders of magnitude larger than solving five iteration steps by reusing the factorization.


[image: _images/figure_hpc2.png]

Figure 2: Strong scaling of a 3D FSI pipe flow problem. a) Meshing of the inner fluid domain, and
outer solid pipe with a total of 63 thousand elements. b) Split of the geometry in 16 MPI domains.
c) Total time spent for one time step (jac.: Jacobian matrix evaluation, fact.: direct solver
factorization step, it.: direct solver solve steps) as function of the number of MPI tasks. d)
System memory usage as function of the number of MPI tasks for three different mesh discretizations
of the problem illustrated in panel a).







          

      

      

    

  

    
      
          
            
  
New features

The existing methods provide many degrees of freedom, however, if you need a specific method
or functionality, please do not hesitate to propose enhancements in the
issue tracker [https://github.com/KVSlab/turtleFSI/issues/], or create a pull request with new features.
Our only request is that you follow our
guidelines for contributing [https://github.com/KVSlab/turtleFSI/blob/master/CONTRIBUTING.md].




          

      

      

    

  

    
      
          
            
  
Known issues


MUMPS failure error message

When running a large problem, typically a 3D problem with many number of degrees of freedom, with several tens of processors,
the MUMPS solver (our default linear solver) may fail with the following error message:

*** -------------------------------------------------------------------------
*** Error:   Unable to solve linear system using PETSc Krylov solver.
*** Reason:  Solution failed to converge in 0 iterations (PETSc reason DIVERGED_PC_FAILED, residual norm ||r|| = 0.000000e+00).
*** Where:   This error was encountered inside PETScKrylovSolver.cpp.
*** Process: 11
***
*** DOLFIN version: 2019.2.0.dev0
*** Git changeset:  43642bad27866a5bf4e8a117c87c0f6ba777b196
*** -------------------------------------------------------------------------





While the specific reason for this error message can vary, it may occur even when the Newton iteration appears to converge correctly.
In such a case, it is likely that the MUMPS does not hold enough memory to solve the linear system.
To provide more useful information to the user and reduce the likelihood of encountering this error message,
we have added two lines of code to the newtonsolver.py file.
These lines will (1) print the actual error message from the MUMPS solver and (2) allocate more memory to MUMPS.
Specifically, the following code has been added:

PETScOptions.set("mat_mumps_icntl_4", 1)
PETScOptions.set("mat_mumps_icntl_14", 400)





The first line of code will print the actual error message from the MUMPS solver, and the second line of code will allocate more memory to MUMPS.
For detailed information about the parameters of MUMPS, please refer to here [https://petsc.org/release/docs/manualpages/Mat/MATSOLVERMUMPS/].
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